圆环面积教学设计
作为一名专为他人授业解惑的人民教师,常常需要准备教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么优秀的教学设计是什么样的呢?以下是小编为大家收集的圆环面积教学设计,欢迎阅读与收藏。
圆环面积教学设计1教学内容:
人教课标版《数学》六年级上册圆环面积
教学目标:
掌握圆环面积的基本计算方法后,利用含环宽的条件来求圆环的面积的练习。
教学重点:
理解环形中外圆半径、内圆半径与环宽的关系,掌握圆环面积的计算方法。
教学难点:
培养学生用简洁的方法解决实际问题的能力。
教学过程:
一、以P68例2复习圆环面积计算的基本方法。
S=πR2-πr2或:S=π(R2-r2)
二、质疑问难,了解与环宽的关系
一个圆环如果直接知道内圆半径和外圆半径的条件,使用公式就可以代入计算圆环的面积了。那如果没有直接知道内、外圆半径,怎么办?
教师在课件展示环形并标注名称:内圆的半径(用字母r表示)、外圆的半径(用字母R表示)、外圆半径与内圆半径的差就是环宽(用字母w表示),两个圆间的环宽处处相等。
大圆半径=环宽+小圆半径小圆半径=大圆半径—环宽
思考:
1、怎么通过内圆直径d ……此处隐藏632个字……提问:谁能用语言描述这个光盘?
2、实践操作,感知圆环
(1)刚才我们简单认识了圆环,现在你们能用手上的工具剪出一个圆环吗?
学生用一张白纸剪一个圆环。
(2)学生操作,动手剪环形。(教师巡视指导,帮助学有困难的学生)
(3)说出剪圆环的过程。
让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减去小圆的面积。
3、探究环形面积的计算方法。
(1)小组讨论:如何计算圆环的面积?
(2)反馈讨论结果。
学生汇报时,边说边演示从一个大圆里去掉一个同心小圆变成环形的动态过程:先求出外圆和内圆的面积,再求出环形的面积。
思考:要计算环形的面积需要什么条件?
通过师生交流后,明确要计算环形的面积需要知道外圆(大圆)的半径或直径和内圆(小圆)的半径或直径。
4、应用新知,解决问题。
(1)出示例2:光盘的银色部分是个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?
(2)读题,理解题意。
(3)分析数量关系。
(4)尝试解答。
(5)反馈解答情况。
方法1:大圆的面积—小圆的面积。
方法2:大圆半径的平方与小圆半径的平方差乘以3.14。
观察比较这两种解法,有什么不同?
师生交流,引导学生发现:通过乘法分配律,这两种方法可以相互转化,其实它们是一致的。
小结:圆环面积的计算方法,大圆的面积—小圆的面积=圆环的面积。
学生尝试用字母表示求圆环面积的计算公式。