多边形内角和教学反思
身为一位到岗不久的教师,教学是重要的任务之一,通过教学反思可以快速积累我们的教学经验,我们该怎么去写教学反思呢?下面是小编收集整理的多边形内角和教学反思,仅供参考,希望能够帮助到大家。
多边形内角和教学反思1体会及反思:
1、在初一旧教材中完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的情况如何。结合新教材中这一部分内容的编排,所以特意在教学过程中安排了这样一堂活动课,希望对于新课程标准思想有所体现。
2、为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:
(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。
(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、 ……此处隐藏2691个字……形内角和是1440o。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。
发现2:多边形的边数增加1,内角和增加180o。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180
(三)实际应用,优势互补
1、口答:(1)七边形内角和( )
(2)九边形内角和( )
(3)十边形内角和( )
2、抢答:(1)一个多边形的内角和等于1260o,它是几边形?
(2)一个多边形的内角和是1440 o ,且每个内角都相等,则每个内角的度数是( )。
3、讨论回答:一个多边形的内角和比四边形的内角和多540o,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3